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Abstract. A series of simple biases to the selection of crossover points in tree-
structured genetic programming are investigated with respect to the provision
of parsimonious solutions. Such a set of biases has a minimal computational
overhead as they are based on information already used to estimate the fitness
of individuals. Reductions to code bloat are demonstrated for the real world
classification problems investigated. Moreover, bloated solutions provided by a
uniform crossover operator often appear to defeat the application of MAPLE™
simplification heuristics.

1    Introduction

The variable length representation employed by tree-structured Genetic Programming
(GP) [1], whilst satisfying the goal of providing a machine-learning paradigm with a
minimum number of a priori constraints, is also known to lead to approximately
square law increases in code length [2], or what has typically become known as code
bloat [3-7]. The ideal would therefore be to evolve fit – as measured by the applica-
tion performance objective – yet parsimonious solutions. By doing so, the computa-
tional requirements necessary to evolve solutions would be significantly reduced –
fitness evaluation is the most computationally expensive process, where this is pro-
portional to the size of the data set and chromosome length of a candidate solution –
whilst increasing the acceptance rate of GP solutions in the application domain.
Moreover, the causes or biases behind code bloat are known to vary depending on the
GP structure [8]. Here, we concentrate on tree structured as opposed to linearly
structured GP.

In this work our motivation is to investigate the applicability of a series of naïve
biases introduced to the crossover operator using fitness information freely available
during evaluation of individuals. The basic objective is to direct the identification of
crossover points such that parsimonious solutions are identified with minimal impact
on solution performance. In addition, crossover is only allowed to produce one child.
The second is reproduced, the motivation being to let mutation provide further inves-
tigation of the current shape [2]. In relation to previous works, Iba and de Garis con-
sidered the case of collecting information during fitness evaluation to deterministi-
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cally select sub-trees for application of mutation and crossover [9]. However, the
principle motivation appears to have been improvements to the fitness of an individ-
ual and not to encourage parsimony in the solutions found.

2     Methodology and Approach

The initial motivation for this work was to provide transparent solutions using tree
structured individuals in medical applications. Such a requirement is particularly
important in this area due to the need to not just solve the problem, but also to win the
confidence of the patient and medical personnel [10]. In practice, however, this might
be seen as a general requirement for all solutions produced by machine learning sys-
tems. As will become apparent from Section 3, it is not in general possible to apply
off-line simplification of GP solutions and expect a succinct solution.

In order to mitigate this effect we introduce two properties. Firstly, a degree of
determinism is introduced into the crossover operator such that both stochastic selec-
tion and ‘directed’ selection of crossover points is provided. Figure 1 summarizes this
process in terms of a generic GP algorithm with steady state tournament selection.
Secondly, only one of the children is a result of the crossover operation, the other is
reproduced, Figure 2.

The ‘uniform’ sub-tree crossover operator used here selects a branch of the tree
representing an individual using a uniform probability density function. In providing
suitable definitions for the selection of crossover operators, we limit ourselves to
investigating the applicability of the following naïve crossover definitions,

Fitness Directed Crossover: This crossover operator selects the node in the individ-
ual with highest fitness. Node fitness is the error between the target value and node
value (including any wrapper). The node value naturally includes the contribution of
any attached sub-tree;

Fitness Difference Directed Crossover: Directed crossover now selects the node
with greatest change in fitness as evaluation progresses from terminal to root node.
This may or may not help protect the individual from repeatedly selecting the
branches near the root node for crossover;

Roulette-Fitness Directed Crossover: In this case each node of an individual is
given space in a roulette wheel in proportion to node fitness. In this way it is possible
to provide an additional path for the stochastic selection of nodes.

With respect to single child crossover with reproduction of one parent, our princi-
ple motivation is to let the reproduced individual be modified by mutation, so empha-
sizing the further investigation of the current shape [2]. Note that mutation is applied
in addition to crossover in the algorithm of Figure 1, and at a relatively high prob-
ability of 50%, Table 1. The test for producing a single child is summarized by Figure
2, and affects both the directed and undirected process for sub-tree crossover.
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1. Initialize Population of size M.
2. Uniform random selection of N individuals (N<<M).
3. Evaluate fitness of the N individuals.
4. Rank the N individuals in descending order of fitness.
5. IF one of the N individuals satisfies the stop criteria, END.
6. Overwrite worst N/2 individuals from tournament with best N/2.
7. Call these the children.
8. For each N/4 pair of child individuals,
9. IF (apply crossover == TRUE)
10. THEN IF (apply directed crossover == TRUE)

THEN (apply directed crossover)
ELSE (apply uniform crossover)

11. For each of the N/2 child individuals
12. IF (apply mutation == TRUE)
13. THEN (apply mutation operator)
14. Replace worst N/4 members selected from population with children of N/4 best.
15. Return to point (2).

Fig. 1. Basic algorithm for Genetic Program with Steady-State Tournament selection and
directed crossover.

identify crossover points.
IF (number of nodes[child#1] > K)
THEN (use child#2 and parent#1)
ELSE (use child #1 and parent#2)

Fig. 2. Single child crossover with reproduction.

In each case, the directed form of crossover is applied in conjunction with the uni-
form selection of crossover points, Figure 1, point 10. That is to say, by adjusting the
ratio governing the application of uniform verses directed crossover, it is possible to
empirically assess the sensitivity of the approach to different problems. This issue in
particular will be investigated in Section 3. Should the directed crossover definitions
prove appropriate in practice, the principle benefit of such operators is that they do
not require any additional information than that calculated during the course of fitness
evaluation.

Mutation may take one of two forms: single-point or multi-point (applied with
equal likelihood should the test for mutation prove true, Figure 1, point 12). A single-
point mutation selects a node with uniform probability and replaces it with an alter-
native operator with the same arity. The multi-point mutation operator selects a node
with uniform probability and recursively applies the single-point operator over the
sub-tree. Neither mutation operator therefore changes the size or shape of the parent.



On Naïve Crossover Biases with Reproduction for Simple Solutions     681

3    Evaluation

Two benchmark problems are used for the purpose of evaluating the forms of naïve
directed crossover: Breast Cancer and Liver Disease Classification [11], where the
latter is known to be particularly difficult. Table 1 summarizes the problem and GP
parameters used. In all the experiments the parameter K from Figure 2 remains at 200,
where no particular significance appears to be attached to different values for ‘K’ i.e.
the parents are chosen uniformly. The data for the classification problems are sepa-
rated into training and test data, where test data are only used to evaluate performance
once the termination criterion is met.

As indicated in Section 2 one of the purposes of the following study is to identify
the significance of applying different degrees of directed crossover. To this end we
conduct 50 trials for each of the following crossover conditions,

• Uniform selection of crossover points – represents the performance baseline
against which crossover points are selected with uniform probability. Here-
after this is referred to as ‘Uniform’;

• Fitness Directed (FD) crossover – applied at a ratio to the uniform selection
of crossover points: 25%, 50%, 75% and 100%; Figure 1, point 10;

• Fitness Difference Directed (FDD) crossover – applied at a ratio to the uni-
form selection of crossover points: 25%, 50%, 75% and 100%; Figure 1,
point 10;

• Roulette-Fitness Directed (R-FD) crossover – applied at a ratio to the uni-
form selection of crossover points: 25%, 50%, 75% and 100%; Figure 1,
point 10.

Table 1. Tableau of GP parameters.

Objective Find a program that classifies the Breast Cancer (Liver Disease)
Classification problem.

Terminal Set x0, …, x8 (x0, …, x5)

Functional Set +, –, *, %, sin, cos, sqrt

Fitness Cases 524 training, 175 test (259 training, 86 test)

Fitness (and Hits) Number of correct classifications.

Selection Steady State Tournament of size 4.

Wrapper IF GP output > 0.0 and data label is ‘1’

THEN correct classification

ELSE IF output ≤ 0.0 and data label is ‘0’

THEN correct classification

Population size 500

Initial Population Created using “ramped half and half” with depths between 2 and 6.

Parameters: 90% crossover, 50% mutation.

Termination: 15,000 tournaments.

Experiments: 50 independent trials.
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Thus, Fitness Directed crossover applied at a ratio of 25% results in the application of
uniform crossover 75% of the time, when the test for crossover returns true. Natu-
rally, the case of a 100% ratio implies that only the directed crossover operator is
applied.

Performance is expressed in terms of training and test classification accuracy of the
best individual in the last tournament, resulting in each of the 50 trials contributing to
the classification accuracy. By way of comparison the c5.0 Induction System [12]
produced best-case classification errors on test data of 4.6% in the Beast Cancer Clas-
sification problem and 34.9% in the Liver Disease Classification problem. From Ta-
bles 2 and 3 it is apparent that the medians of all GP solutions are better than those
from c5.0 for the two problems. Moreover, c5.0 produced solutions with 8 rules for
Breast Cancer and 27 rules for Liver Disease.  The median of all biased GP solutions
for Liver Disease using FD and FDD were significantly simpler whilst retaining lower
median error rates. Under Breast c5.0 solution was simpler, albeit at the expense of
classification accuracy.

Table 2. Breast Cancer Classification Performance.

Crossover Type Median Test
Error

Median depth
per solution

Median # nodes
per solution

Average #
nodes per
individual

Uniform (baseline) 1.41 7 22 18.23

0.25 1.15 7 20 16.35

0.5 1.15 6.5 21 19.59

0.75 1.73 6 16 15.76

FD

1.0 2.3 4 10 9.654

0.25 1.15 8 21.5 18.68

0.5 1.73 7 20.5 18.3

0.75 1.73 7 24 17.76

R-FD

1.0 1.15 7 20.5 16.29

0.25 1.15 7 20 18.53

0.5 1.15 7 21 18.19

0.75 1.15 7 24 20.97

FDD

1.0 1.44 5 12 11.97

3.1   Breast Cancer Classification Problem

Table 2 summarizes performance of uniform sub-tree crossover and the three forms
of naïve directed crossover on the Breast Cancer Classification problem. It is apparent
that the application of fitness directed crossover, irrespective of the form, results in



On Naïve Crossover Biases with Reproduction for Simple Solutions     683

decreases to code bloat while classification accuracy remains within one percent of
the (median) baseline established by uniform sub-tree crossover. It is also apparent
that Fitness Directed (FD) and Fitness Difference Directed (FDD) crossover provide
the greatest levels of bloat reduction. Roulette-Fitness Directed (R-FD) crossover
appeared to be the least sensitive to specific ratios of directed and uniform sub-tree
crossover, but also never improved on the nodes per solution provided by uniform
crossover.

3.2   Liver Disease Classification

Table 3 summarizes performance of uniform sub-tree crossover and the three forms
of naïve directed crossover on the Liver Disease Classification problem.

The pattern of performance remains consistent with that experienced for the Breast
Cancer problem. Fitness Directed and Fitness Difference Directed crossover still
provide the highest levels of bloat reduction, with increasing cost to classification
accuracy as the ratio of directed crossover increases. Roulette-Fitness Directed cross-
over again provides the most competitive classification performance (with respect to
the sub-tree crossover baseline), but does not appear to provide a particular trend in
terms of code bloat reduction with increasing ratios of directed crossover (clarified
further in next sub-section).

Table 3. Liver Disease Classification Performance.

Crossover Type Median Test
Error

Median depth
per solution

Median #
nodes per
solution

Average #
nodes per
individual

Uniform (baseline) 33.33 8 34.5 26.77

0.25 33.33 6.5 19.5 18.89

0.5 33.33 6 21 18.84

0.75 34.52 5.5 18 15.98

FD

1.0 33.33 3 10 10.17

0.25 30.95 8 22.5 18.71

0.5 32.14 8 28 21.79

0.75 33.33 8 24 21.03

R-FD

1.0 32.14 9 29.5 24.62

0.25 31.55 9 24 20.48

0.5 32.14 7 21 19.414

0.75 32.14 6 17.5 15.68

FDD

1.0 34.52 4 11.5 11.2
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3.3   Analysis of Dynamic Properties

Given the encouraging results for the classification benchmark problems an analysis
is conducted into the evolution of fitness and node count on a tournament-by-
tournament basis. To do so, the classification accuracy and node count of each tour-
nament winner is averaged over a 300-tournament window for each of the 50 trials.
This information is then plotted as an average with respect to tournament for the
15,000 tournaments comprising a trial. For conciseness we will consider the case of
Liver Disease alone, with similar results being produced for Breast Cancer.

Figures 3, 4 and 5 summarize the evolution of training classification accuracy for
Fitness Directed, Fitness Difference Directed, and Roulette-Fitness Directed cross-
over respectively. In each case the uniform crossover classification accuracy is in-
cluded to establish the base line (×). The clear distinction between increasing ratios of
directed crossover and classification accuracy is readily apparent for Fitness Directed
and Fitness Difference Directed crossover, Figures 3 and 4; whereas Roulette-Fitness
Directed crossover closely mimics the performance of uniform sub-tree crossover
throughout, Figure 5.

Fig. 3. Average Training Classification Accuracy – Fitness Directed Crossover. Crossover
types: × - 100% uniform;  - 25% directed;  - 50% directed; ◊ - 75% directed; ∇ - 100%
directed

Figures 6, 7 and 8 repeat the analysis in terms of average node counts as evolution
progresses. Here again, the contrast between different forms of directed crossover is
readily apparent. Each increase in the ratio of Fitness Directed and Fitness Difference
Directed crossover results in step reductions to the rate of bloat, such that by the
100% application of directed crossover, (average) node count is constant with in-
creasing evolutionary cycles, Figures 6 and 7. Moreover, even in the case of Roulette-
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Fitness Difference crossover, the contribution of each increase to the directed cross-
over ratio provides a clear decrease to the rate of average node count, Figure 8.

Fig. 4. Average Training Classification Accuracy – Fitness-Difference Directed Crossover.
Crossover types: × - 100% uniform;  - 25% directed;  - 50% directed; ◊ - 75% directed; ∇ -
100% directed

3.4   Solution Transparency

As indicated in the introduction, one of the desired properties assumed to coincide
with parsimonious solutions is an increased transparency in programs provided by
GP. In order to assess this hypothesis we utilize the simplification engine provided as
part of the MAPLE system for symbolic math [13]. The motivation is to use the
MAPLE symbolic simplification tool to represent the case of an average user who
is used to judge the solutions provided by GP.

A scatter plot is used to summarize the effect of applying the simplification engine
of MAPLE to each of the 50 solutions to the Liver Disease data set for both uni-
form sub-tree crossover and the Fitness Directed crossover (100%), Figure 6. That is,
we compare solutions from 100% uniform selection of crossover points with 100%
deterministic selection of crossover points. Any points along a line “y = x” indicate
that no simplification took place; points above this line indicate that an expression
became more complicated after application of MAPLE; and points below indicate
that an expression was simplified after application of MAPLE. Note also that a log
scale is employed on both axes.
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Fig. 5. Average Training Classification Accuracy – Roulette Fitness Directed Crossover.
Crossover types: × - 100% uniform;  - 25% directed;  - 50% directed; ◊ - 75% directed; ∇ -
100% directed

Fig. 6. Average Node Count – Fitness Directed Crossover. Crossover types: × - 100% uniform;
 - 25% directed;  - 50% directed; ◊ - 75% directed; ∇ - 100% directed
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Fig. 7. Average Node Count – Fitness-Difference Directed Crossover. Crossover types: × -
100% uniform;  - 25% directed;  - 50% directed; ◊ - 75% directed; ∇ - 100% directed

Fig. 8. Average Node Count – Roulette-Fitness Directed Crossover. Crossover types: × - 100%
uniform;  - 25% directed;  - 50% directed; ◊ - 75% directed; ∇ - 100% directed
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In the case of uniform sub-tree crossover it is apparent that on this problem, solu-
tions actually became more complicated following application of MAPLE. Specifi-
cally, an average increase to term count of 168.7, over the 33 cases that increased
after simplification, verses an average reduction in term count of 6.2 over 5 cases,
with respect to the GP solution provided before simplification. In the case of 100%
Fitness Directed crossover there is an average increase of 6.8 terms over 30 cases
whereas no cases produced a decrease in code length with respect to the GP solution
before simplification. It is also apparent that cases resulting in an increase following
‘simplification’ also predominate instances of longer programs with uniform cross-
over. Thus, the uniform application of crossover appears to result in individuals that
are both ‘bloated’ and do not simplify on application of our ‘base user’ (the
MAPLE symbolic simplification tool).

1

10

100

1000

10000

1 10 100

Fig. 9. Scatter plot – Solution Simplicity on Liver Disease Classification Problem. x-axis de-
notes before simplification; y-axis after simplification; × - case of 100% fitness directed cross-
over; o - uniform crossover.

4    Conclusion

Several naïve biases were defined to provide a set of directed crossover operators
using only the fitness information readily available during fitness evaluation. In-
creasing levels of determinism associated with selection of crossover points steadily
reduces the complexity of an individual at the same time that absolute fitness may
also decrease. Moreover, in the case of the classification problems investigated, it
appears that node count was proportional to the ratio of uniform to directed crossover
operators. Finally, it is also apparent that ‘bloated’ GP solutions (case of no crossover
bias) did not necessarily result in significant post evolution simplification when using
the simplification heuristics of the MAPLE symbolic simplification tool. Future
work will evaluate the biases under a wider range of problems.



On Naïve Crossover Biases with Reproduction for Simple Solutions     689

Acknowledgements. The authors gratefully acknowledge the support of a Discovery
Grant from the Natural Sciences and Engineering Research Council (NSERC) of
Canada.

References

1. Koza J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection, MIT Press, ISBN 0-262-11170-5 (1992)

2. Langdon W.B., Poli R.: Foundations of Genetic Programming. Springer-Verlag. ISBN 3-
540-42451-2 (2002)

3. Blickle T., Thiele L.: Genetic Programming and Redundancy, Genetic Algorithms within
the Framework of Evolutionary Computation. Workshop at KI-94, Max-Planck-Institut
fur Informatik, MPI-1-94-241 (1994) 33-38

4. McPhee N.F., Miller J.D.: Accurate Replication in Genetic Programming, Proceedings of
the 6th International Conference on Genetic Algorithms, Morgan Kaufmann, (1995) 303-
309

5. Soule T., Foster J.A., Dickinson J.: Code Growth in Genetic Programming, Proceedings
of the 1st Annual Conference on Genetic Programming, MIT Press (1996) 215-223

6. Langdon W.B., Poli R.: Fitness Causes Bloat, 2nd On-line World Conference on Soft
Computing in Engineering Design and Manufacturing (WSC2) 1997.

7. Soule T., Foster J.A.: Effects of Code Growth and Parsimony Pressure on Populations in
Genetic Programming, Evolutionary Computation, 6(4) (1998) 293-309

8. Smith P.W.H., Harries K.: Code Growth, Explicitly Defined Introns, and Alternative
Selection Schemes, Evolutionary Computation, 6(4) (1998) 339-360

9. Iba H., de Garis H.: Extending Genetic Programming with Recombinative Guidance. In:
Angeline P.J., and Kinnear K.E., eds., Chapter 4, Advances in Genetic Programming II,
MIT Press, (1996) 69-88

10. Borjarczuk C.C., Lopes H.S., Freitas A.A.: Genetic Programming for Knowledge Discov-
ery in Chest-Pain Diagnosis, IEEE Engineering in Medicine and Biology Magazine.
19(4), July-August (2000) 38-44

11. Universal Problem Solvers Inc., Machine Learning Data Sets. 
http://pages.prodigy.com/upso/datasets.htm

12. Quinlan J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman. ISBN 1-55860-
238-0. (1993) (for c4.5 v c5.0 comparison see http://www.rulequest.com/)

13. Waterloo Maple, Maple 8. http://www.mapleapps.com/


	1 Introduction
	2 Methodology and Approach
	3 Evaluation
	3.1   Breast Cancer Classification Problem
	3.2   Liver Disease Classification
	3.3   Analysis of Dynamic Properties
	3.4   Solution Transparency

	4 Conclusion
	References

